
a
ki 

( k l ,2,...,].2) .  Hence , for each j (j—l ,2,...,12) the coefficients

aki 
(k”l ,2,. .. , l2) can be shown to be the solutions to the 12 simultane—

ous algebraic equations

2 3  i—u 2.— I 12

2E1 ~ a~ (-~2.(3i—1) + 2.( ~ 2( i— r ) ] — 2( i—2. ) ( ~ k) }
R—l r—l k— R.+l

2 3  i—i 12
+ a~ (1 + 2E1 ~~ (31—1) + 21 ~ (i—r) — ( ~ k)]}

r—l k—j+l

+ ~~h m  
~ 

~2 
ka.,~~) ( i  + 2 (i-nfl ~~~~~~~~~~~ j 2 (3i-j )

k— i+l r—l

i — 1,2,.. .,12 (33)

• where the distance between each mass is assumed to be h. Note that for

each j (j ’l ,2,. .., 12) we must solve a system of 12 equations in the 12

unknowns a.~ (k—l ,2,. ..,12). The coefficients ajj were found numeri—

cally taking h L/l2 and ~
2 

— (l.2)~~ ~~ and are exhibited in Table 1.

Hence, we are concerned with the discrete eigenvalue problem

AmAu — u  (34)

where u is a 12—dimensional veQtor.

The eigenvalue problem (34) can be solved numerically for the 12

actual eigenvalues A r and associated eigenvec tons ~r 
We wish to com-

pare the actual eigensolution of the 12th—order eigenvalue problem (34)

with the solution of the reduced eigenvalue problem (30), which in terms

of the flexibility matrix A takes the form

~ {j~~4
T
A. ~~~~ }a~ - 0 , i — l,2,...,N (35)

i—i — —
The aigenvalue problem (35) has been solved five times using different

sets of vectors •~
. The first solution was obtained by using an expan-

sion in terms of the eigenvectors of the nonrotating discrete system.

18
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The first five eigenvalues and eigenvectors of the nonrotating discrete

system are displayed in Table 2. The eigenvalues of the reduced—order

rotating system using a two—term, three—term, four—term and five—term

expansion in terms of the nonrotating elgenvectors are displayed in

Column a of Table 3. Note that the eigenvectors of the nonrotating

discrete system possess all the smoothness properties of the discrete

system. A set of vectors possessing these smoothness properties is what

we will call a set of admissible vectors. Indeed, the beading of a

cantilevered beam represents a continuous system which is similar to

the present discrete system so that the smoothness properties of the set

of admissible vectors correspond to the differentiability and boundary

conditions requirements imposed on the set of admissible functions of

this similar continuous system. The admissible functions for a canti—

levered beam are functions which are twice differentiable and have the

displacement and slope at the origin equal to zero. -

The second solution of the reduced order discrete system was ob-

tained by using an expansion in terms of “discretized” admissible func-

tions. We take as a set of admissible functions of the cantilevered

beam the functions

— (X,L)r+l r — 1,2,... (36)

and construct the vectors •r by taking as the 1
th entry in the 12—dimen-

sional vector the value of the function at — ih (i—1 ,2,... ,12).

Therefore,

— {(h) ~~~
’, (2h)~~

1, ..., (l2h)~~’}T (37)

The eigenvalues of the reduced—order system using the vectors of Eq.

(37) are displayed in Colunnt b of Table 3 for r 2 ,3,4,5, respectively.

Of course, it is easily verified that the functions (36) are twice dif—

ferentiable and that $ (0) — $‘ (0) — 0. Hence , the vectors (37)r

19
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possess the smoothness of the functions

The third solution of the reduced discrete system was obtained by

taking discrete values of the functions

— 1 — cos(rirx/L) + ~ (_l)
r+l(r~x,L)

2 (38)

at the points ~ — ih (i—l ,2, .  .. ,l2) as the entries of the vectors
The eigenvalues are displayed in Column c of Table 3 for r 2 ,3,4,5, re-

spectively. Note that the functions (38) are not only admissible func-

tions but comparison functions, i.e. they are four times differentiable

and satisfy all the boundary conditions — 4 ’( O )  = (L) = “(L) = 0.

For comparison purposes, the fourth solution of the reduced dis-

crete system was obtained by using a set of vectors which possess none

of the smoothness characteristics of the system. The motivation is the

following: if we use a complete set of twelve arbitrary linearly inde-

pendent vectors, then we obtain the actual solution only in terms of a

different coordinate system. Hence, the question arises as t~ what kind

of results will be obtained by using a reduced set of these vectors.

The following vectors have been used:

(39)

{i 11-1 -1 -1 1

The vectors (39) are not smooth in any sense. The eigenvalues of the

reduced system using a two—, three— , four— , and five—term expansion in

terms of the vectors (39) are displayed in Column d of Table 3.

Next, let us consider the discrete analog of the integral formula-

tion introduced in Sec. 4. The matrix form analogous to Eq. (19) is

20
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Mu0 

= (40)

As discussed in Ref. 7, Eq. (40) is the basis for an iterative procedure

to obtain the actual eigenvectors. However, because our interest is

merely in selecting a set of vectors which will yield a good representa-

tion of the system dynamic characteristics, it is not necessary for us

to iterate to the actual eigenvectors. Indeed, we shall use Eq. (40)

only as a way of imposing the smoothness properties of the discrete sys-

tem on a set of arbitrary linearly independent vectors. If the system

is positive definite then the resulting vectors will also be linearly

independent. Because the matrix A has built into it the system smooth-

ness characteristics and the equivalent of boundary conditions, by anal-

ogy with the continuoub case, the vector will possess all the system

smoothness characteristics regardless of the form of u0
. Hence, the

fifth solution of the reduced discrete system was obtained by using the

vectors (39) as trial vectors on the right side of Eq. (40) and regard-

ing the resulting vectors as admissible vectors. The eigenvalues for

a two—, three— , four— , and five—term expansion are displayed in Column

e of Table 3.

The actual eigenvalues of the 12 by 12 system are displayed in

Colu~ a f of Table 3. To compare the actual system eigensolution with

the eigensolutions of the reduced order problem (35) for the five dif—

ferent 3ets of admissible vectors just discussed, the error in the ap—

proximate eigenvalues as a percentage of the actual eigenvalues

AN - A
— ) x  100 (41)

i

has been calculated for two, three, four and five term expansions for

each set of admissible vectors. The results are displayed in Table 4, 

21 

- 

-



— : _ . ~~~~~ 
-

• 
-

4-

where Column a of Table 4 gives the percent error in the eiqanvalues of

Column a of Table 3, and similar statements hold for Columns b, c, d and

e. In addition, the actual system eigenvectors as well as the

approximate elgenvectors u~
t
~ obtained from the various reduced order

eigenvalue problems have been calculated. The square root of the norms

of the errors of the approximate eigenvectors
• 

— 11 (i) 
— ~~~(j ) 11 1/2 (42)

are displayed in Table 5 for two, three, four and five term expansions,

where Column a of Table 5 contains ~fle norms of the errors of the eigen—

vectors associated with the eigenvalues displayed in Columr. a of Table

3 and similar correspondences hold for Columns b, c, d, and e. Tables

4 and 5 permit us to make several remarks about the relationship between

the accuracy of the approximate eigensolutions and the set of admissible

vectors used. First, Column a of Tables 4 and 5 reveals that in using

the eigenvectors of the nonrotating discrete system to reduce the order

of the ro tating discrete sys tem one obtains approximate lower eigenvalues

and eigenvectors which differ only slightly from the actual lower eigen—

values and eigenvectors. This can be traced to the similarity of the

eigenvectors of the nonrotating discrete system with the eigenvectors of

the rotating discrete system. Hence, the choice of the eigenvectors of

the nonrotating discrete system as admissible vectors is a good chcice

provided the eigenvalue problem for the nonrotating discrete system can

be easily defined and solved. However, if only the lower eigenvalues

and eigenvectors of the rotating system are of interest, other sets of

admissible vectors yield equally good results as can be seen by inspec-

tion of Columns b, c and e of Tables 4 and 5. Note that using the

truncated set of linearly independent vectors (39) as admissible vec tors

• 
22



yields very poor results while using as admissible vectors those vectors

obtained by imposing the system smoothness characteristics on the vec-

tors (39) via Eq. (40) yields very good results. This can be seen by

inspection of Columns d and e of Tables 4 and 5. Moreover, a comparison

of Columns b and e of Tables 4 and 5 suggests that the error in the

approximate eigensolution obtained by using “discre tized” admissible

vectors is similar to the error in the approximate eigensolution obtained

by using the vectors (39) “smoothed” by Eq. (40).

The degree of accuracy of the approximate eigenvectors can also be

seen by plotting the normalized approximate eigenvectors u.~. Plots of

these eigenvectors for two, three, four and five term expansions are

shown in Figures 2, 3, 4 and 5, respectively. The approximate eigenvec—

tons are obtained by using admissible vectors as in Columns a, b, c and

e of Tables 4 and 5 and are plotted on the same axes as the actual

eigenvectors. It is apparent from Figs. 2—5 that the first eigenvector

is always very accurate, regardless of the choice and the number of

admissible vectors used. Moreover, as we increase the number of admissible

vectors used in the expansion, the accuracy of the second and third ap-

proximate eigenvectors improves regardless of the choice of admissible

vectors. In short, Columns a, b, c and e of Tables 4 and 5 along with

Figs. 2—5 permit us to conclude that any set of admissible vectors, i.e.

vectors possessing the system smoothness characteristics, will yield

accurate values for the lower eigenvalues and associated eigenvectors.

This conclusion should have far—reaching implications in the dynamic

simulation of complex structures by the substructure synthesis.

7. Summary and Conclusions

— In this investigation, the concept of “admissible vectors” for

23
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the simulation of discrete structures is advanced and placed on a sound

mathematical foundation. The idea is to simulate the motion by a sub—

space of smaller dimnesion than the dimension of the actual space, i.e.,

to truncate. Admissible functions have been shown to be sufficient for

the simulation of distributed—parameter members in a structure consisting

of a given number of substructures. Admissible vectors are intended to

play the same role for discrete substructures. The implication is that

set of vectors satisfying certain smoothness conditions and boundary

conditions will yield a satisfactory representation of the substructure

motion. Methods for generating admissible vectors are also presented.

To introduce and validate the concept of admissible vectors, a discrete

system in the form of a lumped—parameter rotating helicopter blade has

been considered . The lower eigenvalues and eigenvectors obtained by

describing the system in terms of different sets of admissible vectors

have been shown to converge rapidly to the actual eigenvalues and eigen—

vectors. These preliminary results appear most promising.
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Table 2

Eigenvalues and Eigenvectors of the Nonrotating Discrete System

A — diag [.8776586 34.71710 273.9302 1058.188 2904.56441

.6144262.lO
_2 

.3506O42~ lO 1 .8938545 •1O~~ .1574684 .2313173

.2363973 •l0~~ .1198151 .2648566 .3836237 .4309673

.5108426~10~~ .2244364 .4026492 .4044953 .2050418

.8708854•l0~~ .321.5703 .4199895 .1600834 — .2351863

.1302899 .3883468 .2947513 —.1889837 — .3938290

.1793706 .4082550 .676l98l.1O~~ — .3947276 —.9143334~ lO~~

.2330795 .3724292 — .1766866 — .3102714 .3186319

.2902570 .2800194 — .3431838 — .84l55l5•l0~~ .3594727

.3498619 .1374686 — .3628411 .3012934 ~.l365950•l0~~

.4110011 — .4332252’lO~~ — .2171513 .3626053 —.3572553

.4729589 — .2478191 .5924247.l0 1 .1094921 — .2424909

.5352285 — .4624363 .4007263 —.3416881 .2873619
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Table 3 — Discrete System Eigenvalues

No. of Estimated a b c d e fTerms Eigenvalues

X x lO~~ .3289033 .3289754 .3289252 .3566144 .3288961 .3288935
2 1 

2
_______ 

X2
x10 .4804341 .5075637 .4811161 1.133973 .4929387 .4804187

A1
x1O~~ .3288940 .3288953 .3288962 .3559324 .3288937 .3288935

3 X2
xlO 2 .4804338 .4804287 .4808920 .5999323 .4805295 .4804187

_______ 

A
3
xl0 3 .3099567 .3498520 .3111606 .5434759 .3166433 .3099386

X1
x1O~~’ .3288936 .3288935 .3288940 .3349127 .3288935 .3288935

A2
x10 2 .4804197 .4804286 .4804447 .5578686 .4804286 .4804187

4
A3
xl0 3 .3099452 .3105774 .3111565 .4531640 .3109182 .3099386

- : 

X4
xl0 4 .1129088 .1361532 .1139375 .2147814 .1286027 .1129031

X1
xlO 1 .3288935 .3288935 .3288936 .3348560 .3288935 .3288935

A2
xl0 2 .4804189 .4804192 .4804359 .5514864 .4804219 .4804187

5 X3x10
3 .3099391 .3101618 .3100193 .4527830 .3102866 .3099386

A4
x10 4 .1129044 .1141827 .1138691 .1563050 .1133845 .1129031

________ 

X
5
x10 5 .3019821 .3855055 .3066433 .4084688 .3156557 .3019716

a. Nonrotating eigenvectors as admissible vectors

b. Admissible vectors as per Eq. (37) ~~~ 
(jh)i+l)

c. Admissible v~sctors as per Eq. (38) ~~~ 
— 1. — cos jh lTi + 

f 
(—l)~~~(jhiri)

2)

d. Admissible vectors as per Eq. (39)

e. Admissible vectors as per Eq. (40)

f. Actual Eigenvalues
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Table 4 — Relative Error in the Estimated Eigenvalues (in %)

No. of Relative a b c d eTerms Error

0.00296711 0.02488588 0.00962596 8.42853092 0.00077392
2

0.00320669 5.65029065 0.14517522 136.03847919 2.60607359

C I. 0.00014806 0.00053885 0.00081243 8.22115504 0.00004408

3 £2 
0.00314882 0.00209765 0.09851756 24.87698487 0.02307392

_______ 

£
3 

0.00584250 12.87784569 0.39425222 75.34951656 2.16321827

L
i 

0.00001622 0.00001260 0.00016299 1.83013831 0.00000064

C 0.00020903 0.00206151 0.00542953 16.12134874 0.002070582

£3 
0.00211595 0.20608765 0.39295927 46.21087947 0.31604395

_______ 

£4 0.00503804 20.59293695 0.91621720 90.23517802 13.90534287

- 

~~~~. 
0.00000258 0.00000009 0.00003613 1.81288300 0.00000017

£2 0.00004674 0.00011852 0.00358253 14.79286722 0.00068427

5 0.00016512 0. 07201388 0. 02603060 46.08796571 0.11228190

£4 
0.00114977 1.13339044 0.85563648 38.44174387 0.42634579

0.00349043 27.66285680 1.54706828 35.26728795 4.53158209

Note: Values in Colu~~s a, b, . ..,  e correspond to admissible vectors as in
Table 3.
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Table 5 — The Norm of the Error in the Eigenvectors
No. of Norm of

a b c d eTerms the Error

6
1 0.00547506 0.01588587 0.00986074 0.28397162 0.00279942

2 6
_______ 

2 0.00578902 0.25104090 0.03974361 0.90269989 0.17395070

1 0.00121843 0.00232567 0.00285403 0.27983097 0.00066492

3 0.00572897 0.00461749 0.03204797 0.47120213 0.01554358

______ 

63 0.00865562 0.38862998 0.06618765 0.76453658 0.17048115

61 0.00040298 0.00035519 0.00127729 0.13463032 0.00008023

6 0.00145583 0.00458223 0.00740622 0.38371777 0.004595912

63 0.00484279 0.04851585 0.06602919 0.61530317 0.06034538

_______ 

64 0.00871355 0.49721320 0.10629355 0.94064578 0.45201685

61 0.00016066 0.00002935 0.00060122 0.13397904 0.00004093

62 0.00068589 0.00109361 0.00600685 0.36878886 0.00262626

5 63 0.00130988 0.02765621 0.01633764 0.61246579 0.03441519

64 0.00370327 0.11857407 0.10113619 0.60093044 0.07256947

0.00778591 0.58238777 0.14596192 0.68919375 0.28400738

Note: Values in Colusms a, b, .. .,  e correspond to admissible vectors as in

~1-ib1e 3.
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